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The domino reactions of pyridine/isoquinoline, bromoacetonitrile/ethyl bromoacetate and a series of
b-nitrostyrenes in the presence of triethylamine afforded novel tri-/disubstituted indolizines and pyrrolo
[2,1-a]isoquinolines regioselectively, presumably via substitution-dipole generation-1,3-dipolar cycload-
dition-elimination and/or aromatisation sequence. In vitro screening of all the seventeen compounds
synthesized against Mycobacterium tuberculosis H37Rv discloses that ethyl 2-(4-fluorophenyl)pyrrolo
[2,1-a]isoquinoline-3-carboxylate displays maximum potency with minimum inhibitory concentration
(MIC) of 1.0 lM, being 7.6 and 4.7 times more potent than the standard first line TB drugs, ethambutol
and ciprofloxacin, respectively.

� 2010 Elsevier Ltd. All rights reserved.
Indolizine, being isomeric to indole, constitutes the core struc-
ture of many naturally occurring alkaloids, viz. (�)-slaframine,1

(�)-dendroprimine,2 indolizidine 167B3 and coniceine.4 They are
important as potential central nervous system depressants,5 cal-
cium entry blockers,6 cardiovascular7 and antimycobacterial
agents,8 spectral sensitizers9 and novel dyes.10 They are also used
for the treatment of angina pectoris11 and as testosterone 5R-reduc-
tase inhibitors,12 besides serving as key intermediates for the syn-
thesis of cycloazines.13 Consequently, the synthesis of indolizines,
especially the biologically active ones,14 continues to attract the
attention15 of organic chemists. Typical syntheses of indolizine have
been well documented in the literature16 among which, the
1,3-dipolar cycloaddition reaction of pyridinium N-ylide generated
in situ from a pyridinium salt in the presence of a base with an elec-
tron-deficient alkene/alkyne is one versatile methodology.17

The biological importance of indolizines prompted the synthesis
of the hitherto unreported substituted indolizines and pyrrolo[2,1-
a]isoquinolines 5–8 (Scheme 1) employing domino reactions, to
screen them for antimycobacterial activities and to report the re-
sults in this Letter. Incidentally, domino reactions18 being conver-
ll rights reserved.
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al).
gent enable a rapid and elegant access to molecules of high levels
of diversity and complexity in high yields relative to multi-step
reactions and hence are increasingly preferred. This study stems
as a part of our research programme embarked on the construction
of novel heterocycles employing tandem/domino multi-component
reactions19 and/or to screen them for antimycobacterial activities.20

In the present investigation, the domino reactions of a mixture of
pyridine 3 or isoquinoline 4, bromoacetonitrile 2a or ethyl bromo-
acetate 2b and b-nitrostyrenes 1 (Scheme 1) in a 1:1.2:1 molar ratio
in the presence of triethylamine were performed in acetonitrile at
room temperature for 3–5 h.21 The reaction afforded 1-nitro-2-aryl-
3-indolizine carbonitriles 5, ethyl 2-aryl-1-nitroindolizine-3-car-
boxylates 6, 1-nitro-2-arylpyrrolo[2,1-a]isoquinoline-3-carbonitrile
7 and ethyl 2-arylpyrrolo[2,1-a]isoquinoline-3-carboxylates 8
(Scheme 1) from the respective reactants in moderate to good yields
(44–80%) of the product (Table 1). All these reactions are regioselec-
tive affording only 5–8, whilst their regioisomers 50–80 were not
obtained even in traces (Scheme 2).

The reaction performed in the presence of different bases, viz.
Et3N, DBU, DMAP, piperidine and K2CO3 (Table 2) clearly shows
that Et3N is the most efficient base for these domino reactions
and that the reaction affords a maximum yield of the product when
a molar equivalent of Et3N was employed.
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Table 1
Synthesis and antimycobacterial activities of indolizines and pyrrolo[2,1-a]-isoquinolines 5–8 against MTB

Entry Compd. Ar X Reaction time (h) Yield (%)a MIC (lM)

1 5a 2,4,6-(MeO)3C6H2 CN 3 44 >85
2 5b 4-MeOC6H4 CN 5 52 85
3 5c 4-MeC6H4 CN 3 54 45.1
4 5d 4-PriC6H4 CN 5 51 40.9
5 5e 4-ClC6H4 CN 4 57 21.0
6 5f 4-FC6H4 CN 4 53 5.5
7 6a 4-ClC6H4 COOEt 3 58 9.1
8 6b 2,4-Cl2C6H3 COOEt 3 54 NTb

9 7a 4-MeOC6H4 CN 5 53 36.4
10 7b 4-MeC6H4 CN 3 60 9.6
11 7c 4-ClC6H4 CN 4 71 9.0
12 7d 4-FC6H4 CN 4 58 2.3
13 8a 4-MeOC6H4 COOEt 3 62 16.0
14 8b 4-MeC6H4 COOEt 4 68 16.7
15 8c C6H5 COOEt 3 65 17.3
16 8d 4-PriC6H4 COOEt 3 80 7.8
17 8e 4-ClC6H4 COOEt 4 62 3.9
18 8f 4-FC6H4 COOEt 3 77 1.0
Rifampicin 0.1
Isoniazid 0.4
Ciprofloxazin 4.7
Ethambutol 7.6

a Isolated yield after purification by column chromatography.
b Not tested.
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Scheme 1. Synthesis of indolizines and pyrrolo[2,1-a]isoquinolines 5–8.
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The structure of the indolizines and arylpyrrolo[2,1-a]isoquino-
lines 5–8 was established from 1H, 13C and 2D NMR spectroscopic
data. The chemical shifts of 5c, a representative example, were
assigned on the basis of straightforward considerations including
HMBCs and H,H-COSY correlations, substituent induced chemical
shifts and signal multiplicities of 1H NMR signals (Fig. 1). A compar-
ison of the chemical shifts of 5c with those of a model compound,
ethyl 2-iodo-1-nitroindolizine-3-carboxylate,22 shows that the
chemical shifts and vicinal J values of H-6, H-7 and H-8 of both
the compounds differ little supporting the position of the nitro
function in 5c and hence the regiochemistry of the reaction. The
chemical shift of H-5 of 5c and that of model compound alone dif-
fer significantly ascribable to the van der Waals deshielding of H-5
by the ester function in the latter.23 The IR spectrum of 5c had the
frequencies expected for the nitrile and nitro groups at 2214 cm�1

(CN) and 1500 and 1367 cm�1 (NO2). The structures deduced from
NMR spectra were further confirmed by the X-ray crystallographic
studies of single crystals of two representative cases, 5b and 8d
(vide Supplementary data).24

A plausible mechanism for the formation of 5–8 is depicted in
Scheme 2. Presumably, a domino sequence of reactions involving
substitution, generation of 1,3-dipole and cycloaddition of pyridi-
nium ylides to b-nitrostyrenes 1 afford 10, which undergo sponta-
neous elimination and/or aromatisation to furnish 5–8 (Scheme 2).
The regioselectivity observed in the formation of 5–8 is ascribable
to the preference of the anionic centre of the dipole to react with
the electron-deficient a-carbon of the b-nitrostyrenes during the
cycloaddition reaction. Probably, the enhanced steric interaction
in the intermediate 10b with the isoquinoline sub-structure trig-
gers the elimination of HNO2 and the concomitant aromatisation
affording 8 (Scheme 2).

In previous synthetic methods, indolizines and pyrrolo[2,1-a]
isoquinolines were obtained by multi-step protocols from the reac-
tions of pyridinium/isoquinolinium yide, prepared in a separate
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Scheme 2. Plausible mechanism for the formation of indolizines and pyrrolo-[2,1-a]isoquinolines 5–8.

Table 2
Influence of base on the formation of 5c

Entry Base Mol % Reaction time (h) Yield of 5c (%)a

1 Et3N 25 14 10
2 Et3N 50 14 45
3 Et3N 75 14 51
4 Et3N 100 3 72
5 DMAP 100 5 65
6 DBU 100 5 55
7 Piperidine 100 15 —b

8 K2CO3 100 10 —b

a Isolated yield after purification by column chromatography.
b Product not obtained.
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step, with electron-deficient alkenes which proceed via cycloaddi-
tion-elimination/oxidation sequence.22,25–30 Only one three-com-
ponent domino approach has been reported in the literature, viz.
for the synthesis of indolizines by the reaction of pyridine, a-
haloketone and alkyne under microwave irradiation.31 Hence, the
present work constitutes the first report on the synthesis of novel
tri-/disubstituted indolizines and pyrrolo[2,1-a]isoquinolines in
high yields of 44–80% (Table 1) by the three component domino
reaction of pyridinium/isoquinolinium ylide, generated in situ
from pyridine/isoquinoline with bromoacetonitrile or ethyl bro-
moacetate, with b-nitrostyrenes at ambient temperature.
The indolizines and pyrrolo[2,1-a]isoquinolines synthesized in
the present work were screened for their in vitro antimycobac-
terial activity against M. tuberculosis H37Rv (MTB) by agar dilu-
tion method32 for the determination of minimum inhibitory
concentration (MIC) in triplicate and these MIC values along
with those of the standard drugs are presented in Table 1.
Among all the compounds screened, three compounds, viz. 7d,
8e and 8f with MIC values of 2.3, 3.9 and 1.0 lM, respectively,
emerged more potent than the standard drug ethambutol (MIC:
7.6 lM). Ethyl 2-(4-fluorophenyl)pyrrolo[2,1-a]isoquinoline-3-
carboxylate (8f) displayed maximum activity, being 7.6 and 4.7
times more potent than ethambutol and ciprofloxacin, respectively.
However, all the compounds are less active against MTB than
the drugs, isoniazid (MIC: 0.4 lM) and rifampicin (MIC: 0.1 lM),
It is to be noted that, in general, both indolizine series 6 bearing
ester and nitro groups and pyrrolo[2,1-a]isoquinoline series 8,
respectively, with ester function in the pyrrole sub-structure
led to enhanced activity than series 5 and 7 with nitrile and
nitro functions (Table 1).

In conclusion, a facile, regioselective synthesis of novel indoli-
zines and pyrrolo[2,1-a]isoquinolines has been achieved via a
domino sequence of reactions from simple, readily available start-
ing materials in a one-pot operation. These compounds also display
significant antimycobacterial activities.
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